Document
>> Back to homepage

Improve Error Proofing with IO-Link and IoT-Enabled Sensors

Posted by Balluff on Jul 20, 2020 2:47:08 PM

Though error-proofing sensors and poka yoke have been around for decades, continuing advancements related to the Industrial Internet of Things (IIoT) are making both more accessible and easier to maintain.

7-1-1

Designed to eliminate product defects by preventing human errors or correcting them in real time, poka yoke has been a key to a lean manufacturing process since it was first applied to industrial applications in 1960. Today, error proofing relies far less on manual mechanisms and more on IoT-enabled error proofing sensors that connect devices and systems across the shop floor.

IoT is enabling immediate control of error-proofing devices such as sensors. This immediacy guards against error-proofing devices being bypassed, which has been a real problem for many years.

Now, if a sensor needs adjustment it can be done remotely. A good example of this is with color sensors. When receiving sub-components from suppliers, colors can shift slightly. If the quality group identifies the color lot as acceptable but the sensor does not. Often the color sensor is bypassed to keep production moving until someone can address it, creating a vulnerable situation.

By using IoT-enabled sensors, the color sensor can be adjusted remotely at any time or from any location.

The detection of errors has been greatly improved by integrating sensors directly into the processes. This is a major trend in flexible manufacturing where poka yoke devices have to be adjusted on-the-fly based on the specific product version being manufactured.

This means that buttons or potentiometers on discrete sensors are not adequate. Sensors must provide true data to the control system or offer a means to program them remotely. They must also connect into the traceability system, so they know the exact product version is being made. Connections like this are rapidly migrating to IO-Link. This technology is driving flexible manufacturing at an accelerated rate.

IO-Link enables sensors to process and produce enriched data sets. This data can then be used to optimize efficiencies in an automated process, increase productivity and minimize errors.

Additionally, the easily expandable architecture built around IO-Link allows for easy integrations of poka yoke and industrial identification devices. By keeping a few IO-Link ports open, future expansion is easy and cost effective. For poka yoke, it is important that the system can be easily expanded and that updates are cost-effective.

Topics: IO_Link, industry 4.0

    Subscribe for more

    New Call-to-action